A three-year project funded by the European Union’s Seventh Framework Programme. The Seventh Framework Programme for research and technological development (FP7) is the European Union's chief instrument for funding research over the period 2007 to 2013. It brings together all research-related EU initiatives under a common roof playing a crucial role in reaching the goals of growth, competitiveness and employment.

Contact Point
Dr. Andrew Dean
Marchmont Observatory
Graduate School of Education
St. Luke’s Campus
Exeter, EX1 2LU, UK

Email: a.dean@exeter.ac.uk
Tel: +44 (0) 1392 264 925
Fax: +44 (0) 1392 264 925
www.se4d.eu

Coordinator
Rupert Wegerif
Professor of Education
Director of Research
School of Education and Lifelong Learning
University of Exeter
St Luke’s, Heavitree Road, EX1 2LU
Email: r.b.wegerif@exeter.ac.uk
Tel: +44 (0) 1392 264708
Web: www.rupertwegerif.name

This project receives funding from the European Union SCIENCE IN SOCIETY Framework 7 Programme (FP7/2007/2013) under grant agreement 244717.
Rationale

Knowledge of science and scientific ways of thinking is essential to participation in democratic decision making when issues that involve science are at stake. The decreasing engagement of many young people with science subjects at school is evident in the falling recruitment to the study of science and technology subjects at degree level in Europe. This is a problem both for the health of the knowledge economy and for the health of democratic participation.

One way to improve science education in Europe, in order to respond more effectively to the new cultural diversity of students, is to learn in collaboration with international partners in countries where science remains a popular career choice.

In Lebanon, India and Malaysia there are issues of cultural diversity yet science remains attractive to large numbers of young people.

By understanding the dynamics of the relationships between culture, gender and science education in the diverse contexts offered by the project partnership we will be able to design new approaches to science education that will appeal to virtually all students within Europe and the world.

Although our aim is to improve the quality of science education for all, our expertise puts us in a particularly good position to explore in more detail the impact of Islamic culture and personal religious belief on the take-up of science, a topic of great concern to all policy makers within Europe and in the world as a whole.

General aims of the project

In this research project, we aim to understand how countries in both Europe and partner countries are addressing the issue of cultural and gender diversity in science education in regard to engaging young people in science education and we also aim to offer ways to help address this issue more effectively. We wish therefore both to understand the relationship between science education and culture and also to provide guidelines and programmes for effective intervention to improve the take up of science education where there is a problem.

We do not, however, assume that there is a problem of any simple kind in the relationship between current science education and cultural diversity but will start by exploring in detail the complex relationship between different ethnically and culturally defined groups, gender, and different areas of science and approaches to teaching and learning science. More specifically, the main research questions addressed by this project are:

1. To what extent is there differential take-up of science education according to ethnicity, religion and gender, in each of the partner countries?
2. To what extent do different branches of science present different demographic profiles?
3. What factors affect differential take-up? These include exploring, amongst students but also among teachers,
4. How do teachers perceive the issue(s)?
5. What educational policies are in place in each of the partner countries to address diversity issues in science education?
6. What would constitute a 'successful' policy or practice and how would this be evaluated? What policies currently in place can be deemed successful according to such criteria, and which ones can be seen to have failed?